
 mathematics education provides a foundation for understanding the world, the ability to reason mathematically,

6I0Z Kıenue[

 The progression from EYFS to Year 2 is smooth and many of the methods used are the same but working with larger numbers.

:uo!ssaj60.d

 out the process and judge if it was successful.
underpinned by a secure and appropriate knowledge of number facts, along with the mental skills that are needed to carry
At whatever stage in their learning, and whatever method is being used, children's methods of calculating will be
 subtraction, multiplication and division which they know they can rely on when mental methods are not appropriate.

 As children begin to understand the underlying ideas they develop ways of recording to support their thinking and To ensure consistency and progression in our approach to calculation and enable a smooth transition between year groups.

Developmental Aims:

 calculation methods will be taught and that recall of facts will be taught in school and tested regularly. more formal written methods. Mental methods and strategies will work in partnership with these methods. Variety of mental strategies which will be used will reflect this ideology - moving from concrete to pictorial and then abstract recording leading to division. Within each specific area there is a progression of skills, knowledge and layout for written methods. The calculation challenges. This policy is also designed to help parents, carers and other family members support children's learning by providing that calculation is taught consistently across the school and to aid them in helping children who may need extra support or teaching and learning of calculation strategies in Mathematics. It is designed to help teachers and staff at Scargill School ensure
 Our school has adopted the White Rose Hub's calculation document, who are leaders in the field of Mastery in Mathematics. We

 ,9 of fonba sit 5 uout ajow I, 		N0,	2		\%uz	 pue spuoq daqunu 	
¿Mou uo ppe ; op aлou kuew moh of ayew 	 so dnosfay aull raqunu e so sampild asn	sашен $\tau \tau=5+9$	วง ว5ก yew 07 د.\|	ешs sn pue Jas9! 9 n मeas			jof mas jopuassa uo st siul OI
дamsue נnok puy of jaquinu saןfews aчp uo ұunos $\angle I=\tau I+S$	- دаmsue ayı puy or dunn auo ull io sauo u! uo zunos pue au!l $\angle \tau=s+\tau \tau$	-wnu saן!e peaq				uo 8̊ụุunos pue лaquinu лวร 	
						ןррои әјочм-үед :әүчм е әуеш of spled 	
p-e.7sq*			әұว				

 $\begin{aligned} \angle L & =O L \\ \angle+O L & =9+\angle+D \end{aligned}$	uopezuasajdas meap pue dnosfay	 	sıəquinu
$\begin{gathered} Z \angle=Z I+09 \\ Z I=\angle+S \\ 09=0 t+0 \tau \\ \angle+0 \hbar \\ \angle t+s Z \end{gathered}$	－Клеssəวәu дІ әбочм 	uopjunu pue sıąunos anjen zoejd＇sauว！p Iulsn ןəpow $\begin{gathered} a_{0} \\ \square_{0} \end{gathered}$	$\begin{array}{r} \text { sıəquinu } \\ \text { ไֶI!p-z oмı pp } \end{array}$
$\begin{aligned} \angle S & =\square+\angle Z \\ \angle D & =0 Z+\angle Z \\ \angle \varepsilon & =0 \tau+\angle Z \end{aligned}$			suəュ pue дәq －unu ů！
5 $\angle \tau$ $z \tau$ $\begin{aligned} & \angle \tau=\varsigma-\tau \tau \\ & \varsigma=\angle \tau-\tau \tau \\ & \tau \tau=\angle \tau+\varsigma \\ & \tau \tau=\varsigma+\angle \tau \end{aligned}$ $z z=s+\angle \tau$		บวเ ว19⿺辶，ауеш 아 әшец पә！asก $\tau \tau=s+\angle \tau$ $\begin{aligned} & z \varepsilon=s+\angle \tau \\ & z \tau=s+\angle \tau \end{aligned}$	səuo pue səquinu ไІІІ омl е рр \forall
pJentsq＊		әұวјиоว	

 əəц pəsn əq ueว イəuоW 9cs ұиәдә！！pue I I səэeןd јеш！эәр Ł๐ дəqunu әшеs әцł प！！s sewịәр әэпроди！ ‘ио әлош иәıр！чข әчł s \forall $\mathcal{E L}=\frac{£ I+09}{8+0 t}$ ＇uo！̣！̣ppe әЧł моəəq әбиечэхә әЧł мочs Кןеәәр оұ uo би！̣ィош әлојәq 	\bullet τ ς τ L $\because \because$ \ddots \because \because \ddots \because \therefore $\because \ddots$ 0 ＇6u！̣puełsıəpun pue 反u！̣ueaə 	－ Би！̣ueə みoddns of pesn əq ueכ sıəəunoo ‘sןеш！эәр оұ ио әлош иәдр！！чэ s \forall －00 아 OL әseg पІ！M әuop әq os｜e ueo s！ч। ＇pәрре иәәq seч uшnןоэ Кıәлә ！！̣un ＇OL әuo 	¡うецłsqe －9／G леә人 pue әłəఎ兀uoว 七／દ ЈеӘ人 6u！̣dnoય6əy －рочłәш uminoう
pJeגfsq ${ }^{\text {P }}$	әృコОนОつ	ן巴！uOjold	$\begin{array}{r} \hline \text { uO!!!pP } \forall \\ \text { ZSX } \end{array}$

uo!queızqns
tS\%/SJス

м	әәиадднр aч1 puy or aull saqunu e 8 Iu\|sn vo zunos		әэиәдәно 2पІ pulf
¿2e nok aje 		spuemypeq Juno nô se Buans speaq әч। әлоW \qquad \square spנemyjeq §upunos 'dnosi әut woy Neme spaə[qo anow	жpeq 8up̣unos
$L=6-9 \tau$ $\varepsilon=t-L$	-Aeme uәxel uәaq SEY JRYM MOYs of spariqo umeap ino ssorj	 Neme uayer aq ues spapqo moy mous ot 	Neme supye_
ว-enjsq8	[e!rozild	әұәлйว	ヌ әлрэә!qо

$\angle L=9 L-\varepsilon 6$	 	ןapou on s8upns peaq so seq peaq e asn $8 z-\succcurlyeq \varepsilon$	$-5 s 00$＇טal zuo ubuy anow buyson tual zuo buyssan aq punous uopssaj6and
乙て＝Lて－Eも	$\iota 乙=\tau 乙-\varepsilon \hbar$ \square		 －\％uldnox －әд 子поч！！ －qns of 8upuopqued
$9 L=\nabla-0 乙$		e aluey of moy moys of yeyp nd e asn	səuo uə1 ozul uzt E dnosizy
pexpsq＊		วృวлวบоว	

KS2 Subtraction	Pictorial	Concrete	Abstract
Column method with regroupi ng	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters		Children can start their formal
Year 3/4 concrete and pictorial.	 Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	3 5 1 Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	written method by partitioning the number into clear place value $\begin{array}{ccc} 728 & -582 & \text { - } 146 \\ { }^{\prime \prime} & 1 & 4 \\ 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$
Year 5 and 6 abstract.		When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Moving forward the children use a more compact method.

uo!łеכ!!d! ! |nw
 [S×/SJㅅㅋ

		O 0 C O \%	
N \times $\stackrel{+}{1}$ in			

$\begin{array}{ll} N & w \\ \times & \times \\ v & \times \\ \\| \prime & \\| \\ \stackrel{n}{0} & \sigma \end{array}$				

0ε 'sz'oz'st 'ot 's'o SI ' τ ' 6 ' $9{ }^{\prime} \varepsilon$ ' 0 01 '8' 8 ' 9 ' \quad ' 0 sıaquinu 		$0 \mathrm{v}=\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}$ 'sןəpow 	(uoupppe pəъeadəд) 0 шон 	
$\tau \varepsilon=\begin{gathered} { }^{2 x} \mid \\ 9 \end{gathered} \underbrace{{ }^{2 x} \mid}_{9 \tau}$	sдәqunu ә\|qпор од моч мочs 		8u\|l	
pensqq		әъапиоэ	 	

$\begin{aligned} & z \div 8=0 \\ & \nabla \div 8=2 \\ & \tau \times t=8 \\ & \nabla \times \tau=8 \\ & \tau=t \div 8 \\ & t=2 \div 8 \\ & 8=2 \times \eta \\ & 8=t \times 2 \end{aligned}$			-дудо уэоа ар!sбиојо жлом Кวч? моч илод! s!idnd os 'uolsialp aq pinous s/ul
$\begin{array}{r} \mathrm{Gl}=\mathrm{G} \times \varepsilon \\ \mathrm{Gl}=\varepsilon \times \mathrm{G} \\ \mathrm{Gl}=\varepsilon+\varepsilon+\varepsilon+\varepsilon+\varepsilon \\ \mathrm{Gl}=\mathrm{G}+\mathrm{G}+\mathrm{G} \end{array}$ иопррре рәjeәдәл әолодиил аци озкене ue asก $\begin{aligned} & \varepsilon \times \forall=\tau \tau \\ & \nabla \times \varepsilon=\tau \tau \end{aligned}$	ұиаләнр мочs ol skene jo suopezuasaıdas asn	 se 'дечд pue suopenbə диалан! диаรалdәл uej kene ue jeyn puejsjapun pinous sildnd 'uojumin pue saq 	әмиеұпишшоэ s! uoupeว!\|dụn\%
7.enfsq*		әұวைบоว	

			notions enom
$t=\varepsilon \div \tau \tau$			
persay	pepopid	papuos	\%ampao

 This is a set series of simple steps for children to work through to solve word problems. This set can be ¿ऽббә ОS पІІм Give children experience of division problems where you have to think about remainder - e.g. how many
 Ensure children relate answer back to original problem -e.g. answer isn't 7, but 7 e.g. what is the difference means word problem involves subtraction
 Get children to pick out the useful information - e.g. the numbers. Get children to see word problems as "a number sentence hiding in a word sentence" strategies to teach children to work through solving word / story / real life problems. Children often find story problems much harder to solve than just simple sums. Here are several useful Additional guidance for word/story problem solving

